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SUMMARY

The report summarijzes the work of the last year under the general
heading "Effect of Local Material Imperfections on the Buckling Behavior o°¢
Composite Structural Elements". The report contains two parts. The first
part deals with delamination buckling of pressure-loaded long cylindrical
shells and panels, and the second with buckling of radially-loaded annular
plates of laminated construction with or without radial stiffeners.

In part A, the geometry is virtually jisotropic and the emphasis jis on

assessing the effect of delam;nation posjtion and size on the critical
ressure, The boundary conditions on the panels are either simply
supported or clamped at circumferential positions. Note that the
cylindrical shells or panels are extremely long and the delamination
extends along the entire length.

In part B the c¢ircular annular plates are subjected to uniform radial
compression around the circumference. Laminated and isotropic geometrijes
are used, For the isotropic geometries the effect of plate and stiffener
rigidities on the buckling load are fully assessed., Moreover, the effect
of boundary conditions is also studied. Finally, for the laminated
geometry, a soluticn procedure jis presented, and demonstrated through a
laminated geometry that yields a primary state which has a unjform state of

stress (symmetric and quasi-isotropic in extension).
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BUCKLING OF DELAMINATED, LONG,
CYLINDRICAL PANELS UNDER PRESSURE.

George J. Simitses* and Ziqi Chen**
School of Engineering Science and Mechanics
Georgia Institute of Technology, Atlanta, Georgia

Abstract

Delamination is one of the basic defects jinherent to laminar materials.
The investigation of the buckling characteristics of delaminated cylindri-
cal shells or panels, when subjected to external pressure, is presented
nerein., The geometry is such that it covers a wide range of length to
radius ratios as well as panels of different widths. Results are presented
only for very long cylinders and panels. The boundaries are either simply
supported or clamped. Furthermore, the material is such that it leads to
{quasi) jsotropic laminates for all sections involved; the overall as well
As tne ones separated by the delamination. Finally, the geometry is free
of inftial geometric imperfections, Because of the last two assumptions, a
primnary membrane state exjists and bifurcational buckling is possible.
Buckling load are calculated for a wide range of parameters. The width and
the through-the-thickness position of delamination greatly affect the

. .
bjfurcation load. 1. Introduction

Cylindrical shells and panels are widely used as primary structures in
zeveral applications, These are often subjected to destabilizing loads.
Therefore, buckling is an important failure mode and it forms a fundamental
2orsideration Jn the design of such systems.

The advent of fiber reinforced composite materials has resulted in a
sjgnificant increase of thejr use as a construction material, because of

their many advantages, especfally their high potential weight and overall
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: costs savings. It was deemed necessary then to investigate the buckling
1
* cnaracteristics of laminated cylindrical shells. Initially, the studies I
o were confined to configurations, which are free of defects, such as
- delaminations,
: In 1975, Tennyson [1] presented a review of all previous studies on
;.\ the problem. Most of these studies employed the classical approach and
)
‘: dealt with individual and combined application of uniform axial
7' compression, pressure and torsion. Hirano [2] investigated the buckling of
: angle-ply laminated circular cylinders and obtained the best lamination
E: angles which give the highest buckling stress. There are also some papers
» about the stabjlity of triple-layered anisotropic cylindrical shells [3-5]
i} and sandwich panels [6].
The stability of geometrically imperfect, laminated cylindrical shells
' were jnvestigated by Simitses, Shaw and Sheinman [7-10]. The governing
equations for the nonlinear analysia of imperfect, stiffened, laminated,
: circular, cylindrical thin shells, subjected to uniform axjial compression
N and torsion, and supported in varjous ways, were derived and presented.
; Two types of formulations were developed, one (W, F formulations) based on
:S vonnell-type nonlinear kinematic relations and the other (U, V, W
‘ “ormulation) based on Sanders-type.
:_r The bickling of laminated cylindrical panels was studied in recent
:. years also. Zhang and Matthews [11,12] considered panels under four kjinds
of boundary conditjions subjected to the combination of axial compression
-': and shear forces. Two coupled, fourth-order partial differential equations
E 7ere solved by the use of multiple Fourier serjes. Numerical computations
&
by were performed for a number of panels with different lay-ups, different
"_;: curvatures and different materials,
<
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EE Whitney [13] studied the buckling of anisotropic cylindrical panels
oY under arbitrary combinations of axial load, internal pressure and jin-pla' >
_j\ shear load. He used Donnell-type equations jin conjunction with Galerkin's
COA

::E: method to determine critical loads.

:. Buckling and jfnitjal postbuckling behavior of symmetrically laminated,
]

-: thin cross-ply cylindrical panels under axial compression was investigated
S

.& by Hui T14]. He obtained closed form solutions for the buckling loads.
‘ :‘:

The initijal asymmetric postbuckling behavior was demonstrated by computing

the postbuckling coefficients,

Composjite structures often contain delaminations. Causes of

- e

delamination are many and include tool drops, bird strikes, runway debris
hits, and manufacturing defects. The presence of delamination in a

composite material may cause local buckling and therefore a reduction in

! N N
AR RFE L I AR

L .

tne overall load bearing capacity of the structure. The problem of

delanination buckling has received attention in recent years.

o

\-_:: A finite element analysis was developed by Whitcomb [15] to analyze a
.' laninated plate with a through-the-width delamination. The postbuckling;
\ heravior was studied. In the parametric study, stress distributions and
> 3

\ strain—ener""y release rates were calculated for various delamination
l12ngths, delamination depths, applied loads, and lateral deflections. Some
:,:j delanination growth data were obtained through fatigue tests. Another
N

-‘:_: saper in this subject was presented by the above author and Shivakumar
)

"::2 253, in 1985, in which the buckling of an elliptic delamination embedded
4:::.:: near the surface of a thick quasi-isotropic laminate was studied. Both the
‘: Tinite Zlement and the Rayleigh—-Ritz methods were used for the analysis.
v

The Xayleigh-3itz method was found to be simple, inexpensive, and accurate,
::j ax2ept for highly anisotropic delaminated regions. In that paper, effects
2
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of delamination shape and orientation, material anisotropy, and layup on

buckling strajins were examined.
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Yin and Wang [17] derived a simple expression for the energy release

"
?éﬁ rate assocjiated with the growth of a general one-dimensional delamination.
(j The energy release rate was evaluated by means of the path-independent

)

’Eﬁf J-integral. Yin and Fei [28] investigated the buckling load of a circular
l;is plate with a concentric delamination,

B -,

. Angle-ply composite sandwich beams with through-the-width delami-
,;fg nations were studied by Gillespie and Pipes [19]. Reduction in flexural
EE? strength was found to be directly proportional to the length of

B

(¥ delamination and varied from 41% to 87% of the pristine value.

y S. S, Wang [20] investigated the buckling of angle-ply composite

Ei} laminates with edge delamination. Based on a recently developed theory of
(A~

V laminated anisotropic elasticity, the problem was formulated using

o
fﬂj Lsexnnitskii's complex variable stress potentials., An eigenfunction
255 expansion metnod was employed to solve the singular elasticity problem.
i) “ith the aid of a boundary collocation technique, complete stress and

Y

:EQ “izplacement fields were obtained.

A
_;EE A twc-dimensional analytical model was developed by Chai and Babcock
;‘j; {21] tu~ assess the compressive strength of near-surface interlaminar
éi; defects jin laminated composjites. The postbucking solution for the
Ei;‘ delaminated elliptic sections was obtalned by using the Rayleigh-Ritz
,'t .ethod, while an energy balance criterion based on a self-similar disbond
-rf;? growth governed fracture.

! Simitse Sallam and Yin [22-24] jinvestigated the delamination
I:Qu buckling and grewth of flat composite structural elements. A simple
::ig dJne-dimensional model was developed to predict critical loads for
B
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delaminated plates with both simply supported and clamped ends. The

effects of delamination positon, size, and thickness on the critical loads

were studied in detail. The postbuckling behavior as well as the energy
release rate were examined. The results revealed that the damage tolerance
of the laminate was elther governed by buckling or by the fracture
“~ughness of the materijal.

Almost all the papers about delamination buckling deal with beams and
plates., Owing to its complexity in mathematics, very limited information
on the subject of delamination buckling of shells Js currently avallable.

Troshin [25] studied tﬁe effect of longitudinal delamination, in a
laminar cylindrical shell, on the critical external pressure. The shell

w38 assumed to be separated by the delamination into three panels. A

system 0of eight ordinary differential equations were derived from the
governing partial differential equations., The system along with boundary
and continuity conditions was integrated by the Kutta-Merson method with
intermediate orthonormalization of solution vectors. Critical pressures
for various locations and sizes of the delamination were found. In another
paper [26], the above author investigated the delamination stability of
triple-layered shells with almost the same method. Sallam and Simitses
£27] studied delaminations buckling of thin cylindrical shells of perfect
geometry, when subjected to uniform axial compression., The delamjnation
region was assumed to be of constant width and covering the entire

circunference,

E:i' 2. Mathematical Formulation
]

ii] The Koiter-3udiansky (28] buckling equations have been deduced from

-ﬁﬂ' thozse siven in the Appendix of [28]. They are given below in terms of

iy
i
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%:: stress, Njj, and moment, ij, resultants for a thin, circular, cylindrical
el
D™
N shell under uniform pressure,
o
‘i) 1 * 1 .0 x X
H % A - == + R - Y - + = O
"3-_‘,; Nexox Mgy T Moy TR G Ty T 0y T O
Y
‘I"
%
) N + N s 1 e e L (1)
,, Yxy,x  yy,y R OUyy,y o xy,x 2R “xy,x
N
P
‘.:*: * b **
N y y
o + qR (e v TR )+ q'=0
e o
.-'- . g
“NOJR M +2M + M - qR (¢ A )
vy XX, XX XY.Xy O YY,YY y,y R
ok
[ ]
Rl 0 o \* z
. ‘ + =
:-;. g (e ‘yy) q9“= 0
S
tj where 2y, by and ¢, are rotations about axes denoted by the subscripts, g%,
.

"

1Y and q? are corrections to surface loading due to load behavior during

buckling, q is the applied pressure sz’ ssy and Yzy are the reference
surface small additional strajins (needed to take us from the primary
membrane state to the infinitesimally close buckled state), and R is the
radius of the reference cylindrical surface. Note also that if the terms
denoted by a single asterisk are dropped the equations, Egs. (1),
correspond to those obtained from Sanders type of kinematic relations [29].
Similarly, if terms marked by elther single or double asterisk are dropped
nne ohtaina the well known Donnell-type of equations,

Cince thnere exist three possibilities of load behavior during the
cucwliing process 30,313, the corrections to surface loading assume three

Adistinctly 4jifferent expressjions,
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> I. Load remains normal to the deformed surface
* %
% = = M y = - - L . Z =
q = QW,X HEe| q (wyy R ) H q 0 (28)

II. Load remains constant-directional

qx = qy = qZ = 0 (2b)
III. Load remains directed towards initial center of curvature
=0 ; Q= ag i q7= 0 (2¢)

The kinematic relations are given by

XX XX XX

= + ZK
fyy T Fyy yy (3)

YO + 22K
Xy Xy X

v

1

Y

“here the expressjons for the reference surface strains, rotatlons, ¢;, and

changes in curvature and torsjion, kij’ are given Dby

3 = u, O, = T W,
XX X X X
* %
oL, L . v ;
N & = T W,
R y R y R y
C 1
¥ = u + oy ¢ == (v - U, ) 4
xy 'y 'x 273 Weg T Wy (4)
< = T W,
KX XX
s 1 * ¥
4 vy =T oA, T TV, )
iy ¥y n )
¥4
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The usual lamination theory [32] is employed. Moreover, it is assumed
that all shell (laminates) parts are symmetric with respect to their
midsurfaces (Bjj = 0). Then, the stress and moment resultants are related

tc the reference surface strajn parameters by

r—; ] r~A A A | r-?o |
XX " 12 " “
Yyy ) SF A2z ho3 vy
-—Nx‘{— _A13 Aoy A33__J _Viy_i
r—Mxxm‘ r-DH D12 D7; —Kxxj
Yyy - P12 P22 Pe3 “yy ”
K% A RV I P

where

.
=

_(%)
i3 (= h )

i
o~ <
O

Al
I ke

N (k)

1 3 3.

= 3 y Q5 (h, ~ h
k=1

lan]

3
j ] k-1’ (6)

and hyp and hy-3 denote the z-coordinate of the upper and lower surfaces of
the kth lamina in each laminate, respectively.
In terms of the displacement components, u,v and w the buckling

equatjons, £qs, (1), become
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WO
‘; Note that these equations correspond to the Sanders' approximation [30] and
Ca'll
£
v
: tnerefore all asterisaks have been dropped.
]
dact) 2.1 Description of the Delamination Problem
-
.
:\ Thin circular cylindrical shells and panels with longitudinal
o
N
:« delamination over the entire length are next consjidered., The geometry,
i loading and coordinate systems are shown on Fig. 1. The ends of the panel
>,
_Q ar= either clamped or sfimply supported. The locaticon and size of the
|' »
%.
h 9
[}
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delamination is arbitrary. Angle a denotes the region of the delamination,
while 8 and Y denote the location of it from left end and right end,
respectively.

It is assumed that under subcritical loads the delamination does not
expand. The panel is separated into four parts (four panels) by the
delamination., FEach part has a set of coordinates attached to it, (see Fig.
1.) and the natural plane of the panel lies on the XY-plane. The panel
je subjected to uniform external pressure, q, over the entire outer surface.
Let ni (i = I, II, 111, 1V) denote the thickness of the ith panel (see Fig.

1). The nondimensional parameter h = hI/hIII is used to describe the

thickness of the delamination. Let ul, vi, w! (1 = 1, II, III, IV) be the
displacement components of material points on the midplane of each part
{zach panel) in the x, y, and z directions, respectively.

The panel becomes a complete cylindrical shell when the total angle

2(2 = a + 8 + Y) equals 2v. The geometry is such that a membrane primary

state exjists (Bi’j = Q) for all participating parts. Therefore, the buck-
ling equations, Egs. (1), apply to each part. They are subject to boundary
conditicns at 83 = 0 and 6y = Y (see Fig. 1), and certain kinematic con-
tinuity conditions as well as force and moment local equilibrium conditions
at tne common boundaries of the various parts (63 = B and 6y = 0).

Lote that all of these conditions are associated with y = constant
pesitions. Each part must also satisfy boundary conditions associated with
% = constant positfons., These are not listed now, but they correspond to
the classjcal simply supported ones., They are listed in the next section.

The various boundary and auxiliary conditions associated with y =

nor,stant posjtions, are listed below:
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(a) Clamped

{(b) Simply Supported

wIII -0 wIII -0
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Yy
Gl = o uIII =0
Auxiliary Condition at 63 = 8 (87 = 62 = Q)
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ﬂa- Auxiliary Conditons at 6y = 0 (81 = 62 = a)
& o IM
% 1 11 IM
123 60 = 007 = b
4 y y
"..
)
]
e - Ve o ntlz) =0
% y
Tl
T
s oV -6l =0
"b:' y )
0
. ¢
Wy us - (uIV + @iv hII/Z) =0
:ﬁ IT Iv IV, I
P, I _ -
:: u (u ¢x h™/2)
e 1 11 IV
N + N - N = 0
o7 vy vy yy
=
e I 11 IV
o ND o+ NTT - NTT =0
- xy xy o xy
L R el el I
yy Yy Yy vy Yy
I I 11 11 5 -
Qy(eft‘) * ny,x /2 Qy(eff‘) ny,x h /2 Qy(eff‘) 0
Boundary Conditjons at 6., = ¥
(a) Clamped (b) Simply Supported
WIJ = 0 WIV = 0
I'\j IV
st 20 (a M= 0 b 1
v ) vy (b) (11)
LA NI oo
Yy
uIV -0 uIV ~ 0

Note that the simply supported conditions, Eqs. (8b) and (11b)

correspond to the classjcal simply supported conditions, SS-3 [32].
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:.\.:_ 3. Solutjon Procedure
194
.'-'. For each part, a separated solution is assumed, which satisfies the
S ¥ S
v
classical simply supported boundary condtions at x = 0 and L. This is
\‘:'.'
o done for the special construction for which there is no coupling between
o extension and shear, and between bending and twisting action. This means
i)
__ that for all parts
..-
e A=A, =D, =D =0 (12)
::\:: 13 23 13 23
M
," The classjical simply supported boundary conditons are denoted by
e SS3: W = Myy = Nyy = v =20 (13)
-‘\:Q’ )
"'-‘—" The separated solution is characterized by
4
J(\.: mmx
oL ulx,y) = U(y) cos ==
‘I
b u(x,y) = V(y) sin =% (14)
PR
s
o
wix,y) = W(y) sin 9{—)5
-
i:j:: Substitution of Egs. (14) into Eqs. (7), for the special construction,
e
-“.f: fge. (12), yields
e LU+« L, V+ L W=0
’»1'3‘ 11 12 13
-
"“f’-A:. L21U + L22\/ + L23w = 0 (1%)
_"”:
L LU+ L _V+ L _W=0
o 31 32 33
."-. where the Lij are linear differential operators. Thejr expression is given
»..-' by
2
= - ( n
Ly, A G+ L A33()
’ - ]
12 = (Aot Agg) B0
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wnere the prime denotes differentiation with respect to o,

CRL T,

L = L/m7R . 8 = y/R, and ) = qR3/D11,

L N
i , .n' ‘:. B

f,
.

55a.

and R is the same for all parts.

Zlimination of U and V through the use of the first two of Eqs. (15)

% B

and through substitution into the third one yields a single higher order

Oy

yrdinary differential equation in W alone. This higher order equation

~>
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asaumes the forn
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= 0 (17)

W“here the F'as are constants that contain the external load q and structural

geometric parameters (Ajj, Dij,ﬁ, R, etc.). Note that some of the F's
change according to the case of load behavior during buckling, Egs. (2).

The expressions for the F's are given below:

~ . 2 - 2
fg = D22u (a33 a23)/R
R -2 2 -2 2
2 T - -

r6 J22L (a32 a22)/R + AD11L (323 a33)/R

(3. + 2D__) (a..-2a..)/R° + A__L°a

12 33 23 33 22 23
P« A L% (a..+a )+ (D._+ 2D )a.. -2a. RS+ b..a. /(LR) 2 (18)
4 22 33 22 12 3374822 32 11333
=2 2 -2 2 . -

+ AD11L (a22 a32)/R + DZZL (a31 a21)/R A12La13
- .2 _ 2 B 2
P AUT1L (a21 a51)/R + (D12 + 2D33) (a21 2a31)/R +

L2 ¢ D /(LR L
+

"o 3y * ag,) 11 (LR) 127%2

- -2 ,
3 T Aok Ay T gy (LR)? Ayokagy
! )J11 D33 0 AL _
R 21,,‘ ) —2‘[/{ =5 1 JL
- k"~ 33 R R2
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2 -3 _ . - =3
, a = L (a 0| —5 ) (ay, e =5 ) - (A, a) [ L7y,

a., = - A, .| (A, + 1 — ) LT+ (D12 + 2D33)/R
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o4 a,, = A, LA, [ ) —= )L+ S (b, 42D, )] ¢ —5— (19
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The solution procedure is similar to the one described for rings and
arches in Article 7.3 of Ref, 34, The number of equations is higher, the
equatjons themselves are more complex, and a closed formed solution is not
expected as in Ref. 33. Nevertheless, the overall procedure can be
followed and a numerjcal estimate can be achieved.

The basic steps are as follows:

First assume for W(6) a solution of the form

W=oe e (20)

Since the order of the equation is eight, then substitution into Eq.
(17) yields an eighth degree polynomial in r, Thus, eight roots are
expected for each geometry and load level. If the elght roots are

distinctly different, the general solution for W(8) is given by

8 rje
W(s) = ) C, e (21)
5=1 '

Note that if double roots occur the form of Eq. (21) is modified
accordingly.
The form of the solution for U(8) and V(6) is similar to that of Eq.

(21), or

3 r,e
U(s) = § Aje
i=1
(22)
3 rjO
(6) = ; B,e

i=1
Note that in derfving Eq. (17), U and V were eliminated through
operations on Egs. (15), The intermediate steps that lead to this

elfmination yield
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(23)

(Loglyp = byglpp) Vo= (Lyglog - L13L21) W

Substitution of Egs. (21) and (22) into Eqs. (23) yields the

expressjons of Aj and Bj in terms of Cj, or

=4
ti

Faal

(@]

B, = njCj for i =1,2,...8 (24)

where

(2hLa)

= la..r, *+ ria.. + r?a23)/(a31 + r§a32 + ria33)

Tnus, the solutics for U, V, and W is given in terms of eight constants Cj,

while %5 and nj are known,

ry®

U (o) =} gCe’

f=1 7

8 r;®
Y (8) = ) n Cie ™ (25)

=1 ’

8 rie
Wo(e) = ) C,e

i=1

There exist ejght unknowns, Cj's, for each panel. Since there exist
four panels be rause of the delamjnation, the total number of unknowns is 32.
2 of the 32 boundary and auxjliary conditions, Egs. (8)-(11), leads to a
system of 32 linear hnmogeneous algebrajc equations in the 32 unknowns, A

~cntrivial solution exists if the determinant of the coefficiects vanishes.
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SRS Tnis is the characteristic equation, which yields the value of the critjcal
N load. A numerical procedure has been developed to accomplish this.

For the sake of completeness, the boundary and auxiliary conditions
o are presented in terms of the respective displacement functions, u, v and w
L2

b [see Eqs., (8)-(11)1].

Boundary Conditions at 65 = O

SN (a) Clanped (b) Simply Supported

111 111 111 I1I
v = 9 A12 Ru,x + A22 (v,6 + W) = 0,

:?f S g (a) Wit oo (b) (262

111 2 111 III _ _III ) 111
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3oundary Conditions at 6y = Y
(a) Clamped ‘ (b)Y Simply Supported
UL'4'= 0 uIV = O
. v oIV IV
va -0 A12 Ru,x + A22 (v,6 + W) = 0
(a) (b) (29)
T, SV
1V 2.1V Iv IV IV
(VoW =0 RTD1o Wagx ~ Dop (Magg™ Vag) = 0

All of the above conditions can easily be expressed in terms of U(¢),
v(8), and W(9) instead of u, v, and w. This is so because in all boundary
and auxjiliary conditions, Eqgs. (26)-(29), if the order of differentiation

with respect to x, of v and w is even, the one for u is odd, or vice versa

"see 4., (14)]. Thus, in each one of the conditions either sin 9%5 or
: cos X 3 tne common factor, which does not vanish for all x.
;f A computer program has been written in order to obtain critical
Ei: conditions for all geometries, The Georgia Tech high speed digital
.
:1; compiater, CDC Cyber 70, Model T74-28, was uced for generation of results.
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L, Numerical Results

fesults are presented herein only for a special geometry and only load
case 1, Egs. (2a).

The geometry is an Jsotropic geometry (as in [25]) with the
2lamination parallel to the shell reference surface and extending along
the entire length of the panel, Moreover, the panel 13 assumed to be very
lonz and thus the solution is not affected by the x=constant boundary

2onditiona. Finally, the boundarjes at 6 = const. are taken to be clampec.

The results are used to study the effect of delamination position

{through the thickness), E, and of delamination size, o (see Fig. 1). Note
trat the results correspond to B = ¥ for the case of panels.
Tne results are presented both in tabular and graphical form, for a

complete circular shell as well as for panels of angle m and n/2. Critical

1nad parameter values, -} ()} = qR3/D), are shown in Tables 1-3 for varjious

values of 3 and h. The mode is either symmetric (S) or antisymmetric (A),
and it ja designated as such in the tables and on the figures, Figs, 2-4.

For the complete cylindrical shell, and for midsurface delaminatlon

= 0.5, the critjcal load parameter jis 3 for the perfect configuration,

joN

and it decreases to 0.75 when the delamination extends to the entire
circurmference. It s next shown that this is a reasonable expectation.

It ic assumed that before buckling the circularity is maintained,
there fg& complete contact of partsa I and 1I (see Fig. 1), and if one

taes oy qI -l qIII and QIV the pressures on the varjous parts then

L I (30)
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C YRR

'? Moreover, in the primary state
£
. :
. 5 Rj2q1
K W = —— i =1, I1, II1 and 1V,
& en'

-

) (31)
Tl
» wI - wII . wIII . wIV' and R1= R
\

: Then, before and up to the instant of buckling the pressure loadings on
:: parts I and 1I, qI and qII, are related to the applied loading q, through
-

S

Y Egs. (31), by

v‘.' 1 - II .

,5 g =hq : g = (1 -h)gq (32)
iy 12’ is defined as

e V- dr3 ! i =1, I, 1II, and IV (33)
b then

v Iir )IV - q R3/D -

P

!

- P e qlmdr - (ReR¥ ) 22 (34)
. D =2
-. h
s I 2 GMR3p s -R)2

o

i: Clearly then, when the cylindrical shell is completely delaminated

<.
K- v =Rt

i cr cr

\‘ A I = - . 2 = - n =

" and A 3.0; therefore Acr 0.75 for h = 0.5.

f- Cre may say at this point that the residual strength of the completely
<
"y
- delaninated thin cylindrical shell jis equal to
it
J-
N =2 =2
Fa = - _
o Yeotal (h™ + (1-n)71(-3)
2 : ;
TNnus f = = - =
f: nus, for h 0.5 Atotal 1.5, while for h 0.1
o,
Vtotal = 0.82(=3) = -2.46.
{n*
A
L
K
P
® e 4
o
v
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%
?-3 The results corresponding to the complete thin delaminated cylinder
\.
AN
0N are shown in Table 1. Note that when o = 6.2 (close to 27) the value of
T_ the buckling load parameter is (0.1)2 (3) or 0.0003. The same results are
‘ -

-

~ presented graphically on Fig. 2, while Fig. 3 shows the complete curves
\--

' corresponding to symmetric and antisymmetric buckling but only for h = 0.5.
\

) Furthermore, there exists two important observations. One is that the
£S5
'-" _
Roo critical load assocjated with the very small h-values should be viewed as
's_')

ik neasures of local buckling and not as measures of load bearing capacity of
' tne overall structure [25]. The second observation s that in most cases
~: the buckling mode of the two parts that are separated by the delamination
~
Wil

.,‘ {parts I and II ; see Fig. 1), is an antisymmetric mode of the type that
\; suggests contact over a certain portion and no contact over the remajning
. _

:' one. This suggests that the postbuckling behavior for shells with h will

. _

i ne different from that of shells with (1 - h), although the critical loads
-_’..: are the same for the two (see Table 1). Moreover, for each geometry,
-:‘,': regardless of Fl, the transition from buckling to postbuckling behavior will
}) require accommodation of the predicted (buckling mode) contact.
l&:
;‘_. Results for clamped panels with ¢ = 7 and 7/2 and symmetric
N,

> delamination (B = Y) are presented in Tables 2 and 3 and on Figs. 4 and 5.
A
s All generated results correspond to an antisymmetric mode., For these
AN
b ¥

::: results also, as in the case of the complete cylinder, the critical load
::.

o varies from the perfect geometry critical load [34,35], when o is very
o =z211, to the value of h° A for (1-m)% ) ], when the panel js

A smadld, ° perf: perf-J, b g

l_.‘1
_\_';: 2ompletely delaminated (see Fig. 1).

\';_n
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From the above results it is clear that further and more detajled
'S studies need be performed before we fully understand the complex response

of delaminated, curved laminates.
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Table 1 Buckling Load for a Delaminated Circular Cylindrical Shell

o h 0.5 0.3(0.7) 0.1(0.9) | 0.01(0.99)
0.000 | 3.00000(aA)] 3.00000(a) | 3.00000(A) | 3.00000(A)
0.2 2.88461(S)| 2.86341(S) | 2.93602(S) | 0.20186(A)
0.4 2.41778(S)| 2.57496(S) | 2.87696(S) | 0.05044 (A)
0.6 2.27045(S)| 2.46545(8) | 2.23770(a) | 0.02240(4)
0.8 2.23305(S)| 2.42099(S) | 1.25739(a) | 0.01260(4)
1.0 2.19743(A) | 2.40772(8) | 0.80364(A) | 0.00803(A)
1.2 1.94698(A) | 2.31670(A) | 0.55715(A) | 0.00557 (A)
1.4 1.76893(A) | 2.12619(A) | 0.40858(A) | 0.00408(A)
1.6 1.65424(A)| 1.95652(A) | 0.31218(A) | 0.00312(4)
1.8 1.58796(A) | 1.78177(A) | 0.24614(A) | 0.00246(A)
2.0 1.55616(A) | 1.57452(A) | 0.19894(A) | 0.00199(A)
2.2 1.54597(A) | 1.35834(A) | 0.16406(A) | 0.00164(A)
2.4 1.50758(S) | 1.16633(A) | 0.13757(A) | 0.00137(4)
2.6 1.38708(S)| 1.00618(A) | 0.11701(A) | 0.00117(a)
2.8 1.29118(S) | 0.87462(a) | 0.10075(a) | 0.00101(A)
3.0 1.21859(S) ] 0.76648(a) | 0.08769(a) | 0.00088(A)
3.2 1.16706(S) | 0.67713(A) | 0.07706(a) | 0.00077 (a)
3.4 1.13386(S) | 0.60284(A) | 0.06832(A) | 0.00068(a)
3.6 1.11579(8) | 0.54070(A) { 0.06107(A) ]| 0.00061(A)
3.8 1.10883(S) | 0.48847(A) | 0.05501(a) | 0.00055(A)
4.9 1.10645(8) | 0.44445(A) | 0.04993(A) | 0.00050(a)
4,2 1.03733(A) { 0.40729(a) { 0.04566(A) | 0.00046 (A)
4.4 0.97570(A) | 0.37596(A) | 0.04207(A) | 0.00042(a)
4.6 0.92187(A) | 0.34970(a) | 0.03907(A) | 0.00039(A)
4.8 0.87585(A) | 0.32788(a) | 0.03658(A) | 0.00037(A)
5.0 0.83751(a) { 0.31006(A) | 0.03455(A) | 0.00035(A)
5.2 0.80665(A) | 0.29590(A) | 0.03294(A) | 0.00033(A)
5.4 0.78308(A) | 0.28514(A) | 0.03172(a) | 0.00032(a)
5.6 0.76645(a) | 0.27756(A) | 0.03086 (A) | 0.00031(A)
5.8 0.75620(A) | 0.27287(a) | 0.03032(A) | 0.00030(aA)
6.0 0.75131(A) | 0.27061(A) | 0.03007(A) | 0.00030(A)
6.2 0.75003(A) { 0.27002(a) | 0.03000(a) | 0.00030(a)

(s) SYMM. Buckling Mode
(A)  ANTI-SYMM. Buckling Mode
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Table 2 Buckling Load for a Delaminated Panel of Angle m (rad.)
(Clamped Boundaries)

(=]

h 0.5 0.3(0.7) 0.1(0.9) .01(0.99)

X
0.000 8.00000(A) | 8.00000(A) | 8.00000(A) | 8.00000 (A)

0.2 7.90294(A) | 7.94443(A) | 7.98782(A) | 0.20187(4)
0.4 7.18972(A) | 7.56860(a) | 5.03907(A) | 0.05044(a)

0.6 5.81200(A) | 6.71586(A) | 2.23788(A) | 0.02240(4)

0.8 4.64551(A) | 5.71862(A) | 1.25744(A) | 0.01258(A)
1.0 3.94345(A) | 4.86852(a) | 0.80366(a) | 0.00804 (a)
1.2 3.58022(A) | 4.10046(A) | 0.55720(A) | 0.00557 (A)
1.4 3.43175(A) | 3.31277(A) | 0.40862(a) | 0.00409 (a)
1.6 3.40141(A) | 2.63529(A) | 0.31223(A) | 0.00312(4)
1.8 3.39324(A) [ 2.12076(A) | 0.24619(A) | 0.00246 (4)
2.0 3.31556(A) | 1.73589(A) | 0.19898(A) [ 0.00199 (a)
2.2 3.13397(A) | 1.44421(A) | 0.16410(A) | 0.00164(4)
2.4 2.88519(A) | 1.21911(A) [ 0.13762(A) | 0.00138(A)
2.6 2.61981(A) | 1.04247(A) | 0.11706(A) | 0.00117(A)
2.8 2.36815(A) | 0.90161(A) | 0.10080(a) | 0.00101 (A)
3.0 2.14240(A) | 0.78775(a) | 0.08774(A) | 0.00088 (4)

3.141 | 2.00056(A) | 0.72026(a) | 0.08003(A) | 0.00080(a)

(s) SYMM. Buckling Mode

(A)  ANTI-SYMM. Buckling Mode
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Table 3 Buckling Load for a Delaminated Panel of angle ™/2(rad.)
(Clamped Boundaries)

S h 0.5 0.3(0.7) 0.1(0.9) | 0.01(0.99)
0.000 | 32.59514 () | 32.49695 (&) |32.43374(a) | 32.43112 (&)
0.2 29.21156(4) | 30.70972(a) |20.16636(a) | 0.20186(a)
0.4 18.67281(a) | 23.12066(A) | 5.03951(8) | 0.05044 ()
0.6 13.92583(a) | 16.33205(a) | 2.23812(a) | 0.02240(a)
0.8 12.87370(a) | 10.54976(4) | 1.25768(A) | 0.01258(4)
1.0 12.72554(a) | 6.99228(a) | 0.80391(a) | 0.00803(A)
1.2 11.46249 (A) | 4.93227(A) | 0.55745(a) | 0.00558 (A)
1.4 9.57106(A) | 3.65625(a) | 0.40889(A) | 0.00409 (a)
1.57 8.11394(A) | 2.92168(a) | 0.32464(a) | 0.00325(a)

(s) SYMM. Buckling Mode

(A)  ANTI-SYMM. Buckling Mode
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EFFECT OF BOUNDARY CONDITIONS AND RIGIDITIES
ON THE BUCKLING OF ANNULAR PLATES

G. J. Simitses and Y. Frostig

Engineering Science and Mechanics
Georgia Institute of Technology, Atlanta, GA. 30332

ABSTRACT

The bucxling analysis of multi-annular plates, witn different
properties, is presented. The geometry may include ring stiffeners at the
common joints and the plate may be supported in various manners, simple
supports, clamped supports, etc., at the loaded outer edge. The loading is
uniform radial compression and static. Several parametric studies are
performed in order to assess the effect of geometry, material properties of
the annular sections and of the ring stiffness. Moreover, when rings are
present, the ring geometry is modelled both as a curved beam and as an
annular plate, for comparison purposes.

INTRODUCTION

The stability of multi-annular plates with or without ring stiffeners
is being considered. Most researchers have investigated the buckling of a
single annular plate (with or without a rigid inclusion) when subjected tc,
orimarily, a uniform stress field,

Several studies [1-8] nave been reported in the open literature for
cirecular and/or annular plates under various loads, boundary conditions and
thickness variation; see also their cited references.

Moreover, a few studies report on stiffened configurations with
special stiffening [4,9,10].

In all of the above studies, certain simplifying assumptions were
made, such as neglecting the extensional stiffness of the ring stiffeners
"12], which may or may not have a significant effect on the critical lecad.
Morenver, the annular sections were considered to be homogeneous and of the
same material, by virtually all investigators.

The present manuscript deals with buckling of multi-annular platec

~ith different material properties and thickness and stiffcned or

339
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b
;\ unstifrened by rings at the common joints., The inplane loading is
R
5 zxisynmetric and several combinations of transverse and inplane boundary
s
o conditions are considered. The mathematical modeling accounts for the
v
j" sxtensional rigidity of the rings, in addition to their torsional and
N
‘j tencing stiffnesses.
! MATHEMATICAL FORMULATION
i
l: The eguations governing the primary state for each part are; (see
N SEB)
N
‘ o
t - =
. J".Jrr‘),r‘ Nee 0
v (1)
b [}
o N =
o 86,6 0
Tr2 zucxling egquation for each part of the plate is:
l
o’ W W
J o4 o} o] ’96 'r
. Dow = N W Nee [ 2 " ) (2)
K r r
wrere Nir, NZ” are primary state stress resultants in the radial and cir-
9]
,: zunferential directions, respectively; w is the transverse displacement;
b D R ).a are partial derivatives with respect to radial or angular
/: ccordinates and D is the flexural rigidity. The geometry and loading are
o snzwn 21a figure 1.
o
- The inplane stress resultant distribution is solved first, using
‘: cquations (1). The constants are determined through continuity conditions
'% it “ne aeommon joints, see [11]. 1In case of a stiffened plate, the
~:\
N continuity conditions include the deformation and radial stress resultants
S
#, f tnz stiffener (see [12]).
:g ire inglane stress distribution in the various parts of the plate
*:: i2renis on tre extensional rigidity of the various parts, in addition to
By
'
"
:J'
; AC
L)




- 3
| R -1

[P

Jecmetry and cross section of ring stiffened multi-annular
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o the extensional rigidity of the stiffener. Even in cases whore tie ot
") is nomogeneous, but with stiffeners, the stress distritution {5 ot
v

Y constant as suggested by Rossettos [10]. The exact distributiosn deponis on
1y

) :' \ "

.zt the extensional rigidity and location of stiffeners, The buckling eguaticn
A%

e for each part is given by equation (2). The equation is solved by assuming
]

L a separable solution of the form:

-

e

.h.\.q

AN ®

eyt Wwir,e) = Z Fn(r) cos nf 5

n=0

<
Lo wnere Fq(r) is the deflection function in the r direction f3r the ntn
LI :

¢t )

b buckling mode.
NN

N

@ The constants for the transverse deflection are calculated ucing
-

:af centinuity and equilibrium conditions at the commen joints zand toundary
b
‘jnj conditions at the edges; see [11] for the unstiffened plate., In the case
o

of 2 stiffened plate the continuity conditions are applied also to tne

::- stiffener. The equilibrium conditions include the contr.puticrs of tre
- stiffener, related to their bending and torsional rigicities; sce [12].

In the case ¢of a plate with a ring of rectangular cross-secticn, it 1¢

Of
»
(t

w
»jﬁ p033ible to analy~-e it by considering the entire systerm z3 a
-'.'u
1/ : . p . : N
iq multi-anmnuilar plate. In such a case the dimensions of the rectungular
1
La ) i i R s
. ring must be such that plate theory 1s applicable to all ;late SeFments
4 1% i £
Q (inner, ring and outer). Here, tne various ring stiffnesces can e
$ ‘ . . .
o 2xpressed in terms of the ring plate material properties (F:;,v.) anc
*l .
0' ", .
. L thickness tp, 1In this case, if the btending rigidity i tixo i, tno
ot , o ) o . . L .
ol torsional rigidity is also fixed (dejonding only on the Pulsoio'as rayr 0,
Ca’]
i A numerical exanple {5 presented ir oo culse tuent oootlon
<u
N
hd

results arn compared Wit thoce based on ring-otiftence: ;lat nnal,olo.

i
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NUMERICAL EXAMPLES

N

A conputer program has been developed, and it 1s descrited with
surficient detail in [11]. With the aid of this program several parametric
studies are performed. The results consist of critical loads,

corresponding to axisymmetric (n = 0) and asymmetric (n = 1) buckling
~>des, for multi-annular plates. The geometry is a two part rplate, cne
«rnular and ons circular, wWith different material properteis, with our
~itnout a single ring stiffener, located either at the edges or at the
coiimen joint,

The stiffener rigidities are cxpressed in a non-dimensicnal form as

follows:
:AR . EIR
a0= ’ =
R N 2 R 3 _ 2
“Tt1<1 VI) s E?t?/12 (1 v]) r,
— T ( ]
Yy = GJp/ Bl (&)

wnare, EAgs EIR GJy are the extensional, flexural and torsional rigidities
oI the ring, respectively. Ey,ty,v; are the modulus of wlasticlty,
thickness and Poisson's ratio, respectively, for the outer plate, znd r, is
«n2 outer radius of plate

3afore discussing the numerical results, we present the influence of
r=a oxtensional rigidites of the various sections, including the one of tne

iffenzr, on the distribution of the primary (preduckling) stress
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Primary State Distributions

The primary state is solved for first, by equations (1). The presence
of a stiffener, berause of its extensional rigidity, influences the stress
distributions. The parameters to be considered are the ratio of the
moculi, E2/Ey, the stiffener rigidity, ag, and the position of common
Jeint, ri/rg.

The constant stress resultant of the inner plate is derived

analytically, by using equations (1) and the continuity conditions.

E

- 2
U )l u_ (82 - 1)1+ V)
o} 1 0 1 =
» - N (5)
rr rr
2 1 - v u]
- s-——=+2(57)]
1 0
where u1/uO =2 8]/ L (1 + v) + BT (1= v) + (E2/51) (1 + V) (Bf - 1) -
2 2
+agB, (87 =D ] 8] = r /vy (6)
K DO
v - Poisson's ratio of the plates (v1 = v, = v) ; and N el
r
o

applied at the outer edge.
In case of a plate stiffened by an edge ring, the constart stress
resultant of the inner part becomes

Nrr = = Nrr/ [ 1+ uRE /E (1 + v)] (7

The effect of the stiffener extensional rigidity on trhe stress
resultant distribution of an annular plate, stiffened by a single ring a4t

tn2 inner edge, appears on figure 2. As ap is increased the strecs
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: Stress disteimor o . _
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(r1/"/rg = 0-7).
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;~ A Seo Ll ant Lnoresses taroughout the annular plate. Note that if there is no

O

o cincooa, o= 2y, tne radial stress resultant is zero and increases
A

\.. X . ) .
" mit3lleallyr vy the value of the applied loading, Nap. When ws = O.

v

: ) o]

B T=lw.ze 2P otne presence of the ring, the value of Nrr close to the

b=

N stiffenzr 15 greater tnan z2ro und its variaticn with position (r/rg) is

B o s 353 bafora,

\

{ﬂj notne o3> 2f a nmulti-annular plate, stiffened by a ring, the stress

.:{: so.otant o flzurioutlon depends on ay and ring position ry/rgy, but also cn

2

e oo STlrfnesses O tne LWOo plate sections, Ep/Eq.  Figure 3 descrites the

i:: e slzurltation for a two—part plate stiffened by a ring at the common

"

" , - . . , .

o _.inTotax2n as n1/ry = 0.7). The ring extensional stiffness parameter is
)

AR

> CELoRP .= 505 {corresionding to light stiffening L12]) and Ep/Eq =
- - - 1

T, .5 oarna 1Ll dote that for E2/E1 = 1.0, the stress resultant

hs ‘- .l

RN Py

LnTrsisil 23 42 Ty Lowards the ring, then there is a drop (because of thne

CAE
7.0

o N . : ~ .

R zxt2nolonal 3tirfness of the ring), and finally it becomes constant for the
[ ShnEt TErl. fOr Z./Zy = 0.5 and 0.1, the only difference is tnat thne
'~':’: e o . N C e . . .

g - PLUeS0 resustant cdistribution decreases (outer annular section) as we move
xa

s . S e

5O
¢
¢
1
<
i
»
n

,: _L7i Lo aznerted Multi-annular Plates
AN

" Snoe wA4sTpart plate is simply-supported and loaded by a radial
T

R

;\ s@l o Lonenrl in--lanez loading abt the outer edge. The case of a stiffened
f{ ponfiCaratitn, with a singlie ring located at the common joint, is also

rlnicnl Lowrs o are calculated for tne following paraneters:

2= Wion= 9, 1 (modes);  ty o= to;
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o= 1y ap 7 9eu8s BR = 1.2; Yy = 0.6 (asym.)

nrnet o othe worsicnal ring stiffness, Yy, does not affect axisymmetric

cu2<ling.
T2 results for the unstiffened plate appear on figure 4 for the

comsetric puskling nede,. rFor the same mode, the results for the

inat 2oafiguration appear on figure 5. [Figures 6 and 7 describe the
, "orrestonding to the asymmetrice mode (no= 1), for unstiffened and
o »13b2s5, respectively.
cw TLlllWing ecnciusions can be drawn from these figures:
Tne Iritical load (lowest eligenvalue) corresponds to the
cotriz mode, or both types of plates.

rr bucwling 1cad for an unstiffened plate is decreasing as the

7 trne razil inecreases., This is true for both modes. In the

W

©zo2, flgure 5, the critical load increases with rq/r,, for ri/rg

T, wni tnen it ducreases, for rqy/ry 2 0.7. For a stiffened annular

ros've = o, tne coritical load increases continuously with increasing

TLroa tWo-part unstiffened plate (0 g E5/Eq1 s 1.0), the critical

o

Sep TA5oon 55/5; ani ry/rg. For extremely small values of E,/Eqy (it
orovaiues of 0.1 and 0.01, and the observation probably is true

“./t: walias in the range of 0.1 < E,/Ey < 0.5 the behavior
oo TT o wa ratio of the radii (rq/rg). For E./Eq = C.1, as long as

Telo2rotoxn Aapproxinately 0.55, buckling seems Lo bte trigpered

©.i. L. otoe annular part and the ceritizal load 1o a little larger thon
SLontlngoto wy/Ey o= 0 (purce annular plate). i the other
o
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in, Tor ry/rgy - values larger than 0.55, the critical load is smaller

ni more flexible part, It appears that for E,/Eq = 0.1, the corresponding

n Tnat of the pure annular plate, and buckling is triggered by the inner

W

a.rvs azzr-oaches thne value of 0.4282 as rq/ro approaches unity (a complete

2irsoulir plate with bending rigidity equal to one tenth of that of the case

S In the stiffened case, the central part triggers overall buckling
£n-n Loz ztiffenar is located between 0.7 < ry/rg £ 1.0. For values of

r2 modulus of elasticity ratio, Ep/Ey has small influence,

-
ot

2 T zrinical loads are nearly the same as those corresponding to the
ztilron2:r wnnular plate. For ry/ry S 0.7 (stiffened plate) the decrease in
e oLroticar lead depends on Ep/ig. As the inner part becomes nore
Slaxille, tn2 "drop" in the critical load becomes much steeper.

: stiffened plate with an outer edge ring (see figure 5), the

N
~.

'R
iyl

S..eling l2a7 goes not converge to the expected value of 4.20 Dy/r , but
- = rniznar value, This i3 so because of the extensional rigidity of the
ring, {32z eguation (7).

“rnz roztrzining effect of the ring is more pronounced and buckling occurs
2o L8 toe Llate {(inner part) is partially clamped.

-> far, ine stiffener geometry (ug = 0.08, Bg = 1.2 and yYg = 0.6) is
.2, 3nd tne study was concentrated on the effect of properties of the two
2% 13793 (22720 and the stiffener position, ri/rgy, for both modes (n =

oy

wewt trne 2ffect of stiffener rigidities is studied for two Es/E;
srla:: . oarnd 501 for both axisymmetric and asymmetric modes. It is

53
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Filg. 3. Effect of flexural stiffness on critical loads
(two part stiffened; s.s; n = 0)
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Zon2, though, for only one value of ag ( = 0.10). The geometries are
Soverned Dy

' n o= 3; ag = 0.10; v =0.3; Ex/Ey = 1.0, 0.1; and gg = 1,2,5,10

25 no= 1; 1z = 0.10; v = 0.3; 52/51 = 1.0, 0.1; Bg = 5; and Ygp = 0.3,

Trne results are shown on figures 8 and 9 forn = 0 and n = 1,
reszsctively.

Tr2 general trends are similar to those described previously,
‘re2ovsr, the ring position corresponding to the maximum critical load is
Zm:ller for the smaller ratio of the moduli. Fer Es/Ey = 0.1, it is close
.ty = 0,73, Note that the maxima critical loads are small for thne
S:ll2r ratio of the moduli, too. Furthermore, the btending stiffness of
“n= rirg has a stablizing effect. The higher the stiffness, the higher the
critical load. Note that this effect is more pronounced at the higher
viiues of r1/75 (Py/pg > 0.3). On figure 8, one can also see curves of
critizai lead vs. ring location, rq/rg, for Es/Ey = 1.0, ug = 0 and various
“3..28 of 2o Wnen these curves are compared to those corresponding to ag
= 7.7, tiney Z2piect the effect of neglecting the extensional stiffness of
thg ring (é22 170]). Zven for this low value of ag (= 0.10), this effect
roo o2 suostantial at the higher values of both ry/ry and zp. Finally,
“r27 tne ring 13 located at the outer edge, the critical load does not

tz20m2 egual to 4.2 D/rl (for E5/Ey = 1.0), primarily because of accounting

Joroun2 axizl stiffness of the ring (see equation (7)).

o

loure 3 Zeplcets the same results, but for n = 1 (asymmetric mocde),
oo .ty o s 9.) and various values of YR for both values of the ratio of

S miially, Eaody 2 1.0 and 0.1, Clearly the loads are higher than those

55
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oz Multi-annular

Coer hLine oo o= J, tnerefore, buckling Is governed by the axisymmetric

. cirnaliv, it Lo ostown on figure § that the higher the value of the
oral stiffness parameter, Yy, the higher the critical load (for n =
3 neotled

lates

I-’/{d“d

an.uner 2xanple consists of a nmulti-annular plate clampeu ~nd loaded

Sorouber esge, The load is radial and axisymmnetric. The parameters

.= J. 3 Ex/Ey = 0, 0.1, 0.5, and 1.0;
r.eon 7 up = 0.08 and gy = 1.2; and

t, az = 0.0"% and 8z = 1.2 and YR = 0.6

ino oon Tigures 11 and 12 for the stiffened plate.
simparison between the unstiffened case and the stiffened one shows
© the stiffener increases the buckling capacity of the plate.
tn2 presence of stiffening, when the ratio of the moduli is
EYaS tuckling is triggered by the central part and the critical
.7 ge2reasing as the common boundary approaches the outer edge.
«>t2 tnat on figure 11, results corresponding to the annular plate,
v, are only snown fcor ry/rgy < 0.55. It has been shown [11] that
> 3.5% nigher (n > 0) buckling modes govern and thus the critical
<2;7onds Lo higher values of n.
Lreoannz of stiffening, figures 11 and 12, shows critical loads
(Ep/Ey = 0).

From figure 12, one observes

oot o covernad Ly othe axisyometric mode, This is true for the
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< Tiexlzie Inner plates, En/Ey = 0, but with 0 < Fo/Ep £1.0, and &
cLUrenoe o4t tne common jolnt, buckling is governed by the axicymmetric
ir:lvsis of a ning-stiffened Plate Using Plate Theory.
*mn wnis section a different approach is used for the analysis of a
nZrmocenssus clircular plate stiffened by a ring somewhere between the center
v in2 “n3 2dge, Tne stiffener, in this case, 1s modelled by a very narrcow
wif .mnalzr plate, with different geometrical and material properties. The
N inalysis carried out 1s that of a three-part plate, where the outer and
xa-ay cinorzl oparts hive the same properties, and the middle part represents the
AL
i suilfener,
NS Triz tyze of analysis 1s correct, provided that plate theory
o _ . . : ,
r— 3o an7tions hold true for the ring part, as well, The ring plate geometry
4
}f o1 Troperties were adjusted in order to yield the following values for
'O ~.nc wyze of stiffnesses. (This was done in order to be able to compare
oy <% Zraseint results with those using ring stiffeners).
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for n =0

.

e - J.2 with 13 = 20
D,

¢ 2z = 3.1 with 23 = 1.0, YR = 0.35 for n=1.
,?. r:3ulls are shown grapnically on figure 13 for n = 0 (axisymmetric) and
. . Lure i forn o= 1,
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2T is seen from these figures that, the comparison is fairly good.

lize that in one case the stiffener is considered as a curved

()

- ey
o2 BV R

venn o znd o in tne other as an annular plate,

CONCLUSIONS

~mzng the many conclusions of the parametric studies one may list the
L..owing inpertant ones:
‘o 3tiffering, regardless of boundary conditions at the outer loaded

©», n:3 a 3tanilizing effect. The higher the bending stiffness of the

ine, Tn2e nigaer the critical load. Moreover the extensional ring
cnitinesso improves the critical load. The effect of bending stiffness is

a2 fcer ring locations nigher than 0.3 ro. Similarly, the effect of

\
)
3]

caterosional ring stiffness becomes important for ring locations higher than

.. %7~. Tnese zonclusiocns are true for simply~supported boundaries, but
trz Trends ar2 alse true for clamped boundaries.

2y Mczdelling the stiffener as an annular plate yields critical loads,

TrxTo. NNt2 tnhiat tne latter modelling is more general, because it can

Srmmod4te various rilng geometries instead of only rectangular cross

2, The uis5e of a single ring, for stiffening a circular plate, implies
2227 znooptimum position. For a homogeneous plate, the optimum position
tirresponds to approximately ry/rg = 0.7 for simply supported boundaries

Lty s 5.5 for clamped ones. These optimal locations change when the

w~oparts of Lha plate have different properties.,
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BUCKLING OF LAMINATED CIRCULAR PLATES

Yeoshua Frostig®' and Ceorge J. Simitses’*
School of Engineering Sclence and Mechanics
Georgla Institute of Technology, Atlanta, Georgia

ABSTRACT
The manuscript deals with buckling of
~tap.et> and annular circular plates, made of
var=trlc laninates with general ortentation of
ia=lra firers, The plate {3 subjected to an

v

-
’
«
X
i

roi.a3re, symmetric, destadbilizlng load, The load
3 iprlled at the outer edge for the complete
7iate ang al the outer and inner edges for the
178 one. The plate 1s supported In various

«“3y3 alang (' wundartes,
The {ncludes the derilvatlion of the
“aver..ag equations and discusses the various

meto. 23 of solution. Numerical results are
freasnt2q [or a clamped plate.

fajper

Introduction
fi*»r ralnforced laminated composites are
faatly i) widely replacing metals as construciton
materialse, especlally i{n the manufacture of
gur atr and space vehicles., Thin plates and
arells ara popular structural elements. Such

Snftguratlicns, in service, are mostly and often
subjectey Lo external loads which may induce
tuskotlng. In many sittuations buokling ls an
ur.4rsiratie phenomenon and (t forms a primary
consideratton for design., Because of this,
etabi ity of laminated plates and shells continues

SR

o attract the attention of the structural
englneer,
M~st of the analyses reported in the opan

l{terature [{1-5] for clrcular configurations are
limi*23 to polar orthotropy, a case for which the
vario.as rigldittes are constant with respect to
the radtal and circumferential coordinates,
Ancthar group of plates eaploys rectilinear
artnotropy for which results are reported in the
n iiterature (6-7]. The analysls, for this
group 1s liatted to vibration prodblems only. The
biexlirg of lam!nated composite plates Is usually
iimite1 to rectangular plates [8-9). A very de-
tatleq syrvey based on hundreds of references by
.ei933 (10, on composite plates, discusses
results and analyses for only rectangular
c.nfic - ations,

Tre manuscript includes the derf{vation of the
gnverning equations and discusses the various
et hods of solutions. The analysis deals with
hureling of 2lrcular laminated composlite plates,
123a2ed by in-plane axisymmetric forceas at the
edges. Thna geometry {9 limited to symmatric
regular angle ply conflgurations and lamination
thecry (8,11) is employed. The solution proposed
tn thae paper 1s based on the GCalerkin ang the
m,n:%1e3 Galerkin procedures. The plates
»on3ldered erein are efther claaped or
simply-surported.

ooe

*Pustinctoral Fellow: on leave from Technlon-
Israel Institute of Technology, Haifa, lsrael.
‘*Professor, Asaoclate Fellow of AIAA; Member ASME

feleased to AlAA to publish in all foras.

Mathematical Formulation

The geometry consists of a circular laminated
plate subjected to ax!symmetrtc loading at the
edges (see Fig. 1). The laminate 1s a symmetric,
regular, angte-ply one (8).

The governing equatlions for the primary state
are [11]:

[ [o] [
(rNrr),r * re,o - Noe =0
[+ o o
Noo,0 * (MNrg),r * Nogm O m

Moreover, the buckling equation, {n terms of
moments and force resultants, after neglecting the
small non-linear terms, 13 (see Appendix 8).

d

* 2 (M
( r "ee.eo

(rHrr) M )

re,o

L3

1
o L
;re re,re r

-M

(<]
eo.r) vr [Nrrv'

rr

LN

2
r

- u,e)] -0 (2)

o
06’

[
re

] L
00’ re

where l:p. N N are the primary state siress

resultants, "r are the bending and

r

twisting moment resultants; w the transverse dis-
placement, and r,8 the coordinates in the radial
and circuaferential directions, respectively.

The in-plane, primary state, kinematic
relations are given by

o
€ - u,

rr r
° v, /r s u/r (3)
00 ‘e 3
Py *u, /r - v/r

re ‘'r ‘e

where u,v are the deformations tn radlal and
circusferential directions, respectively. Note
that the transverse displacement (w®) is zero In
the primary state. The relations between the
ln-plane (reference

stress resultants and the
plane) strains are
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wwore A e T f Q, 'dz, and the 6(k) are
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k-1

sefined L Aprendix A,

Tn2 terms Ay are 8-dependent and they also
gecand o0 the rolaglve fiver orientation between
tre various layers.

Twn f.rmaulations can be used for the primary
3tale anaiysfa, Note that in order to solve the

burw . ing e juation we nael the primary state stress
o) [V bl

resultants, N, N L]
e 89 and re in teras of the

applted loaatngs, if some of the in-plane
~fongitlions are klnematfc then the
¥1aenatl: apir.a~h la used for solving the primary
state. r tthe other hand, 1€ the In-plane

[P ~l1tions are natural then the force

eandary

“ary o

Az~ stho le eaplayed, For details see Appendix B.

Tre «inemiti: formulation {n terms of u and v
ts 2 gt ghtlorearg, The governing equations are
Aer weqd Uy osotstitution of k3s. (3) and (4) tnto
b 0, gt eldtng:
R L FATPIM L M UTPN L PR P

a Lo Ay, .

st T RayYeg t Agglueg vl e
TRyt ey A g Vipllig =0 (D)
Phoe DAYt plug v 3 g

.

s A‘h“'? ‘JN ‘e AUH(J'O ¢ V»r)) "P

T !e"v,o . A“u(u,e . v,r) -0 (6)

Sirce tne Ay, cuefflcients are 0-dependent, the

1erivatives with respect to ¢ are not null and

m.2t be lncluded In the equations.
The force apprcach determines the astress
atstrisation by the Introduction of the Afry

stress function through the in-plane compatibility
equatlon, The Alry stress function and primary
stress resultants are given by {12).

oY 2
N - .
rr F,r/r F,ee/r
Nag ® Fopp (7)
o
N - - /
re (Fag/rhen
ard the compatltility equation is:
] _ o o ~ o -
o 0a r(rr,r v r (r‘eg),rr (FYPG)'PO 0 (8)

- ol e T T

? ST TR T e DD T TR
P

Substitution of Eqs.
Eqs. (&) yleld

(7) tnto Eq. (8) and use of

" - 3 - 3
80 Frpppr * (2855 85, o) T 23,0 s
2
M T P TR TR I LALALE
o (28,0 a,,) c%F e (28, ,+ 8, J)r%F .
12 4y "rrod 12 by, 8 ‘rre
(8, * 8y 00 " a0l TPt (78 49 7 23"
v g ) rF "2 P
('\M.00. Za‘u 0232h) F.8 . (a”'eo v 8, 2am'e
v 2ay¢ 2a,,) Fogp v (28,0 28, o) Figge *
. n"F,eeee - LFF - 0 (93

= [Ayy)7" and Lg Ls the differential

where (alil
the equation.

operator o

The coefficients in the above equation are In
general @-dependent. There is no closed form
solution and an approximate one can be derived
through the Galerkin procedure by assuming

F(r,8) = F (r,0) « 1 afF (r,0) (10}
ne=1

where F _(r,8) is chosen In such a way that f{t

satisfles the boundary conditions, Thus, the

stresses due to function Fp(r,8) must vanish at
the boundaries, The unknown coefficlents, a,, are
evaluated through the Galerkin integrals, or

j‘ (LolF(r,))] Foa = 0 (8= 1,000 (1)

The functions F, (r,8) must satiafy the following
boundary conditions;

o 2
- - /
Nrr 0 Fn,r/r * Fn,ee r
(12)
W aege-F feo B/l at r - R
re n,rg n,e 1

It Fo(r,8) = fo(r) cos nd then the above
oconditiona can be replaced by:

fn(r) -0
(13)

- - R
rn'r(r) 0 at r

L

Namely, the functlions f.(r) can be chosen to be
the deflection functions of a clamped plate.

In the case of a clircular plate,
the outer edge the functions are:

loaded at
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(SR rﬁ-‘(r-ﬂ,\)2 (n=1V,,..°) (18)

ts the cuter radius. .

whero I

{n *na ~ase of an annular plate, loaded at
tra .~nmer 3nd at the outer edges, the functions
crns, lered are:

\
£ ir) e fr - Ro)z(r - n‘)"" . (r-Rl)z(r-Ro)n'

(n=t ...®) (15)
wtere #, and R} are the outer and inner radil,
respecttvely.

‘' tre ~ase of a circular plate, loaded
axl:sametrically at the edgs, or an annular plate

1oa2e? at the outer and lnner edges with the same
frteaslty, an analytical closed form solution
ex:ats, provides that tho plate has cyllindrical
orthitrzzv. Thne function is glven by F = Cre,
wnar2 0 ts detcrained through the force boundary
canszitlzrr. !n the case of a laminated plate,
4itn 1-233/030%93,,, this zolution Is ascceptable
witnia 33me enginering accuracy. Thae error In the
otpatl>iliity ejuatlon, Eq. (9) 1s of the order
1277, inste3d ¢l zero., In general, the solution
crzaetire proposed earlier should be followed.

fh: bucaling equation, in terma of the
traryv2rse dleplacement, |s derived by using the
‘0.i~w.ng winezatlic relations (11]):

rr r

1P "og/rj' H,P/f (16)
L, - Lo a,rslr . w,B/rz)
Wl g 1 gre the radial, clircumferential

~r* Yeqarteg
ans torstiznal curvature changes of the plate
miJdsurfcce. The moment-stralin relations sare
derived tnrough integration through the thickness
ans ar» glven by (Kote that there 13 no coupling
between Lending and stretching)

ldr“\ I Dll 012 D\h xrr

Y b

s, t1 T2 Paa P LI an
) L°1n %n8  Oug 1o

r
h
]
. - 3 [ ) a2,
L) k:Y 1)
L

Zunetitutieon of Eqs. (1) and (16) into Bq. (2)
yle., 2

P B (20 « 20 )

Srrree 1] ‘rrr n 145,90 (8D )

o
‘rrro 18

¢ -, (22 20 -~ D « D

re u,8 18,0 22 Y/

12,00

~ e Ll WY e e S falm
N G VN Gl NS

s . B

Yirre (MOug,9* 205,90 /70

W, (2D e WD, Y/r e w, (DD )/r?
‘rred 12 a4 ‘rrr22 22,600

w, . (8., = AD_, .+ 2D e 20, ..o WD)/ £
‘ro 14 a8 24,00 22,68 24

v (-20, - WD, * 6D )/ rl e
'roe 12 84 28,0

“, 0 _Mr2 -
reee { 2I) MY’ ( qo‘u ¢ 'Dul,e * uozn ¢

- 3 . - 3
254,007 /77t ¥rggl2Pyp *20p, T 8D,y g v MO

3

* Da2ee /T

w (- 4 ¢ 2D )/r30 7] (D_.) / r3 .
‘o0 28 22,0 ‘o000 = 22

r (N v e K (w, /20w, sr) e

re ‘rr 00 ‘60 ‘r
o 2 (v, /e -w, /r2) -0 (18)
re " 're '8
where No No and “o are the radial, ol fer-
rr' 08 re &l, ofrcun

entisl and ochear primary stress resultants., The
coefficients in the above equation, Eq. (18), are
@-dependent and the partial derivatives with
respect to 0 must be considered.

The solution in general, even for the
siaplest of cases, i3 very complicated. An
approximate solution approach, based on the
Galerkin procedure, is employed. It is outllned,
wi.h suffioient detail, in the next sectfon.

Solution of the Buckling Equation

Two varfations of the Galerkin procedure are
eaployed, herein, in order to achieve a solution
for the buckling equation.

The first one {3 the striot Galerkin
procedure, which eaploys 8 serfes solution
(approximation) such that each term In the series
satisflies all boundary conditions, regardless of
their nature (kinematic and/or natural). The
second one {8 the modified Galerkin procedure [13].
In this ocase, each term of the serles need only
satisfy the kinematic boundary conditions., Then
ninimlzation of the error includes boundary terams
along with the Galerkin Integrals.

The approxicate solution 13 equal to
(truncated series):

N
u.(r.o) - nEo Anvn(r) cos n@ (19)

wherer w (r) are functlons of r; A _undetermlined
oconstant Qnd n denotes the number Of terms. The
assumed (funotion to be used with the regular
Galerkin procedure [13), must satisfy all boundary
conditions st the various edges of the plate. The
radial funotion coefflicolents are determined in
such & way that ell the boundary conditlions are
satisfied.
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I~ hwtae to clarify this, let us conslder the
"5 lwy o cases for a com~lets clrcular plate.
4 clemped late at r = A,

Ine boundary conditions for this case are:

foilowi

LAaesa 3,

- h_,3) = " ; w, (R ,8) =0 120)
2 r o

Thus, sut3titution cf the assumed solution, Eq.
Y9 tnt. rese houndary conditions ylelds:

(R e w (% a0 (21)

An Le gerermizad through the applizcution of the

aaleswin proceiures on the buckling equation, Eq.

Ay
fes2 > A sinpiv supported clrcular plate.,
Tme "cundry concdittons for this plate are given

[

M T80 - e | 0w, -0 (w, /rzo v,r/r)

(22)
o

Tunstitagttion ~f
thrg L 100
ylialds L' a
conditione:

tne assumed soluttion Eq. (19),
ifrer anme algebralc manipulations
folineing equivalent boundary

IREII (n = 9...8) (23)
! - 4 ‘ LY 2 2
- (7° - - -
? - w Lot 1ru'n,rr (=n 'n/r /e
(v}
. R '
Mo ST )
S . 1 (k)
¢ " « [ 2 c\'! vn,rr * ("n,r/ re
S
RE car !
1 ? i (k) (k)
\ V- o= g ‘ -
3 PR AR I
-lr r(,r‘ - 7
. § 3 ) w) (k)
- S " : - B -
7. » PR { 2 Ty 'n,rr * dllo ('n,r/r
« rS 0.
! ? i 1 (w} 1 (x)
M I3 3
. ) o 2
TN Tan SN e T Yy Mot

% 1 (h: - h2_1) [ % (—d::;un,rr - (-nzun/r2 .
¢ w /r) d(k) - (w - w /r2) n d(k) ] =0
n,r 21 n,r n 143

LEod 2,0 ot e

. wn'r/r) d:;: . (vn'r/r~wn/r2) n dg:;]- 7}
% ) (nz-h:“) {3 (—aif:un'rr— (-nw e
un'r/r)af;; ) af:g (w o/r = w/rlynl -0
3 Emd-nd - dc- ORI CTLIVR
v, sl d::;(un'r/r -w/rfinl -0 (2u)

where: d(k) -3 Q(k) 4 2 (Q(k)' 2Q{k) . 3

o

(x)
dIl1

(k)
%2

(k)

dll3

k)

(
e = Q

*

4120 = 8 (O,

Q(k) % } cos ug, (2¢

d122

(k)
18 N

TP

() _ 1
141 4

(x) 1
42

- (Q

= (Q

121 =03

12

(Q

Q
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(Q

Q

Q
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n

"

"
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22
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n
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22
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B ]
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"
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"
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() 1

(k))
12 4y 8 “22

=
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cos 28

@i
x
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sin Zek
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BB (Mot 29y
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Trne assumed expression for wa(r) must have
at leas® ten ccnstants and can be described by

) 2 3 k
w (r) e (A s a rera,r ca . r’°¢ta r ¢
" " 'n zn 3n "n
N a
a g oo a7 r7 * a3, re . a9 rg) r n
n n n n
foe n-0 ... N (26)

wrere s, s 2ectermined from the condition that the
determinant cf the coeffliclents must vanish and ag
t: aj arn considered to be the elements of an
elgenvector. Use of the Galerkin procedure leads
t7 the vaniahing of n Galerkin integrals, or:

2
j [ ?;uafr,ﬂ)) vm(r,e) r dard6 - 0;

for m « 1,2 ... N (27}

N te tna* use of the Galerkin procedure with an
aas med aslutlon which satisflies all the boundary
~sndtiticrns 19 advantageous only in the case where
2il “»mundary conditions are klnematic. In case of
natural toundary conditions, the assumed functions
m .1t e mach more complicated and the procedure
@ gt '« very teiious.

An alternate approach 1s offered, which 1s
rasel on t‘re modifled Galerkin procedure as

arypwars tn [(13). In this case, the assumed
8- intlon must satisfy only the kinematic bdboundery
~-nsftisns, and the unknowns are determined

through the followlng modified Galerkin {ntegrals:

T 2t} w e T M - M
A a o' Mr® El ¢ re rr) Ir -~ R
a '
- - ) . 4 - Q - -
5, r 11'9 Il(qrr‘ er) u.(r Rl'o) 0
f a
r =8
t
m - 1,2...N (28)
wrare:
“'r R qrr 3ra the raJial bending moaent and sheasr
a a
fw e datarelned with the approximata solutlons;
M .. s, ara tra radlal hending eomont and snear
T4 & g, ;101 AL Lhe wunilaries dencted by the .
Numerical Fesults
4 . .m;uter “0de 'as Lesrn developed (or
gooee At nameclagl reaalts, Tre cnde employy
eoomie s rw lat,n for LOth the [rieary state
A 3.8, a3 well a8 for the bu~wilng analysls,
a4y v goeneratad oo saveral Spyamotrio,
LAt et geemetring, which are quasl tsotraptic in

extension. The plate i3 made of 2m plies, with
riber orlentations (0°/¢ 180°/am)y, where @ {s the
nuaber Of pliesa. Note that when m = 3 (three
plies), the configuration 13 (09/60°9/-60°)4; when
m - 4, the configuration s (09/450/-450/45C); and
when m = 6, it finally becomes (09/309/-30°9/309/
-30°/30%),. All plies are made of the same
paterial, Graphlite/Epoxy (T300-5208), with 70%
fiber volume and the following propertles

£ -26.3x 100 psl  ; E__ = 1.49 x 106 pgy
" 22

v,, = 0.28 f and e 1,08 x 106 pal

12 G12
The buckling load is nondimensionalized by

3 2.
the quantity E"h /12 Ro(l VIZVZI)' which is

common for all configurations. Thus,
- 3 2 _
N kcrEIlh /12 Ro (@]

rr
cr

v‘2v2|) (29)

Note that h and R, are the plate thickness
and radlus, respectlively.

The primary state {s solved for by using
the procedure, outlined previously, and the
functions appearing in Eqs. (13) and (14)}. The
Galerkin integrals are evaluated by using
numer ical tintegration with Romberg's extrapolation
method. The allowable error ls smaller than 1076,

The approximating series Involves functions
which are thae buckling modes of the corresponding
tsotropic problea,

N
v (r.e) - ) ( lar) ¢ C

n=0

n
2n" ) cos n @

where, J,{ ) are Bessel functions of the first
kind of order n; ap 18 the square root of the
buckling coefficlent of the lsotrc,lc critical
stress resultant (corresponding to the nth mode;

it n - 0 a, = 14.68); and Cyy are undetermined
constants, evaluated by satlsfaction of the
boundary conditions.

The limited results ere shown graphically
on Figs. 2 and 3, Fig. 2 shovs a plot of kgp
versus m, which fmpllies various quasi-isotropic
(in extension) constructlons. It is seen from
this flgure, that k.. |s Independent of m. Thia
fs so because the average llexural stiffnesses,
primartly Dy, & D3,, are the same for all m.
Next, the conflguration corresponding to m « 3 was
taken and Epy/Ej was arbitrarily changed (rom the
correct value of 0.05665 to the value of one
(almost 1sotroplic) by keeping the other values
constant, It 1s seen from Fig. 3 that the value
of k., varies froa 6.16 to 12.31. Note that the
value of k.. for the 1sotroplc construction 1s
18.68. The difference between the two values |3
sttributed to the effect of the shear stiffness.
On Fig. 3, and for E»,/E;y = 1, two additional

values of k. arg shown, In order to depict the
G-effect.
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Appandix A: Compliance Matrix Coefficients {n @
Cocrolnates

This appendlx outlines the procedure (or
determlining the coeffliclents of the matrix in
teras of the fiber orlentastion angle of each
laminate relative to the 8 = O axts,

Trne stress-straln relation for each lasina under
connideration is:

{°4 ] 9y 9, O <
}02 } - Q, 9, O <, (a.1)
{°IPl 9 0 QU 12

Ey
where: Q" - :
V¥
9. - Y1282
127 T
12V

Rotatlon of the compliance matrix, with respect to
an angle (a-8), ylelds the following coefliclents:

+ 289, + 2.0, 0%% ¢ Qs
3, - (q, TR TR
N
Q,, -4 s“ ¢ 2 (Q '\‘Q ) 8% o Q 4 A
227 9 12 ° Ry v 92.¢ (A.2)

T N F R UL N P MR L

\\\ .
Ty = (Q, - Q. 20, 83+ (G - G jsed

2N TP AN T 12 Yoo T ‘
" ~.
= S 22 N o
Qg = Q9 * 0, - 2Q,, --qu.; 8%c” ¢ Q (s ec) \\\\\ >
S
<. ) ~
where o = cos (ak - 8) and 3 - .klx(a*- 8) .
“ N ~
Thus, in the ré-coordinate syst the stress™.
state 13 related to the atate of straln b}. \\\
.
\\ N
3 = = 5 )
r 9y 9 Q4 for N ™~
\.\\
(P00} ~ QIZ 022 Qzu o0} (h.2.1) \\\\\
. - RN
0 Ou "%y re \]
L. ~ P

Appendix B: Derlvation of the Governtng Equations

This appendix ts devoted to a detatled
derivation of the governing equstions. The
positive directions of the applied and internal
forces are descoribed in Fig. B.1V.,

Py
Nos
(1
i/"‘ ‘:“ . M.‘-
— \”,,' L1
l' 'Y\ *qff ‘
‘&1 ra T T4 ] ’{,
L1 f* S vy,
'y
Hee

(a) In-plane Resultants (b) Internal Bending
Forces and Toreslon Momunta




a "‘5 :
R
£ = Ny

! (c) Internal Vertical (a) Positlve Deforsation

i ‘) Shear Forces

4“?"-"
;',“‘ Fig. B.1 Internal Forces A Deforaation of

T Differenttal Area of the Plate
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b ;g ) () + ( ),rd'O( ) = () +( ).ede
0

The in-plane equilibrium equations in terms
af the Internal forces are:

S (B.1)

(ra_ )

N . e N
89,0 re’ ,r re

and the transverse are in teras of inplane foroes
and Ilnternal moments, using the equations above,

X i3
? - o (rM_ ) * 2(M e ln ) .
R e 'er re,re rre,o
:. - \\ 1 .
o ‘% Me0,00 ~ Meo.r’
s
N v, »
06 r
4 TN S Nget 5 ) e
P r r
o N .
e, ~ N
’:’ ‘\\A >~ T
e N M R
NG . YN LA S S N B (8.2)
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AR ’ Tuat"ablxlty (ovornlﬁyxequatlona are derived as
T . foilows? N
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The bending moment and the vertical deflection In
the primary atste designated with ( )° are zeroc.

[ ]
The additional streess, 'lJ' is chosen to bs very

s@all compared to ijg thus, after substituting it

in Eqs. (B.1) and (B.2) ylelds:

(r Nrr),r * “r0.0 - "oe -0

(8.4)

[ ] L[] .
N v (r "ro)'r * N

60,0 =0

re

and the buaokling equation in the vertical
direction is:

H' ¢+ 2 (M' ! M. .
(r rr).rr ro.ro ' r re,o)
(1u Hoo)
- - 1 4
r 00,00 es,r
. )
o . L] o ] Y100 te
* l(Nrr S Npp) Mot (NG, Moo ( PR
[ ]
o . 're 1
.2 (Nrr . nr.) { -;- u,o)] -0
r r

L ]
‘Since M| << NTJ. neglect of these terma and

omitting the % elgn of the deflection and the
moments ylelda:

1
(r"rr)'rr 2

L 1
r

re,re ' ¢ Mro,e) t (M

00,00

Zee, Uor ) .

¢] (o]
Moo,r) * 7 DN we oo WGy 2

r

v,
o re 1
2 N0 ( - -:5 v,.) lJ=o0 (B.5)
The kinematio relaticns used are:
The inplane strain:
° .
Cor ,r
Q
€ = v /r e+ u/r (B.6)
(1] . '
. '
o [o]
‘ro - ZXN R R u,olr - v/r
~
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s Tne curvatures are:
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R AT S At R t Mgy (Vg i) =0 (B
Using the common assumption in plate theory ylelds
tre followlng relatton between the internal forces
4n? Lthe strains and curvatures: [r (D”l”. ¢ Dlzxee * Dl'txr‘e) ] rr *
.
fuo A A 7 [« B .
‘ A €
| rr 1" 12 M rr * 2 Ol * DouXgg * Dyu¥rg) rg
N - A A A (O 2
] Moo 12 Y2 Maal (e * v P * Pou¥eg T Punteg),e *
o 1
N o + ~ (D
l ro| i Ma Ay ‘u_J Teo (8.8) F Dok * Dpoxge EPTL LRI
and T Ot Dpptgg * Dpykeg) ¢t
o o o o
e 1 e L-N_ x - N_x  =2N y )]0 (B.12)
" .
l o [ 0,y Dyp Dy X, refer T00%98 re're
Since the various stiffnesses are 6-dependent, the
derivative of the coefficlents with respect to ¢
M . Iy o o X . are different from zerc and must be included In
) 98 12 22 24 eof ° the equationa,
The in-plane stress distribution can be
M o D D X derived using the Afry function, through the
{ rr‘, P 14 24 hy re (8.9) compabjlity equation. The Alry function and
- ! stress relations are:
h
K
where A -7 J Q.. dz Nrr - F'rA' '(l/l‘sf.ee
1) M 13
k-1
- B
Noe F,rr (8.13)
hk
N = 2
9] e ) - -
1) : J QlJ 2 dz "re (F.O/r)',.
" Py
: The formulation using deforsations u,v sndg w The compatibllity equation is:
. ylaids the following governing equations:

yox

:g ¢""-“ T et T (F Cop)rrr * |
‘
: ir (A v, v LIPATP LI (U.o s v.)) ] P
- - A
{r ‘re)'ro ° (e
S (A Lu,  * A v, ¢ & ( .
129 . u, v, )]
227 20 [ r'le Substituton In Eq. (B.14) and use of Eqs. (B.8)

and (B.13) ylelds:

A C PRI Aanveg t Ayfuag e .0l =0 (B.10)
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-twre Ly 1s the differential operator described in
trhe e juatlon.

Tre buckling egquatlon {3 gliven by:

"rrrr(roll) M

)eo

)
(2[|1 * 2Dll,l’ Yiorre

rer (.Dll)

2D - D * Y/ r ¢

Li2,00

2
22" P20 /7 "
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2
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2022,06
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Fig.

1

Load, boundary conditions and geometry of
8 typical laminated circular plate
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